Tellurium(IV) Tetraalkoxides and Chlorotellurium(IV) Alkoxides Derived from β-Donor Alcohols

Holger Fleischer,*[a] Yvonne Dienes,[a] and Dieter Schollmever[b]

Keywords: Tellurium / Donor-acceptor systems / Ab initio calculations / X-ray diffraction / NMR spectroscopy

 $Te(OiPr)_3OCH_2CH_2XMe_n$ (1a-1c) and $Te(OCH_2CH_2NMe_2)_4$ (2) were synthesised by the reaction of Te(OiPr)₄ with HOCH₂CH₂XMe_n, while TeCl₂(OCH₂CH₂OMe)₂ (3) and Te- $Cl_3OCH_2CH_2XMe_n$ (4a-4c) resulted from the reaction of $TeCl_4$ with the corresponding silylated alcohols Me_3Si $OCH_2CH_2XMe_n$ (X = N, n = 2; X = O or S, n = 1). These compounds are the first known representatives of the hitherto unknown classes of tellurium(IV) tetraalkoxides and chlorotellurium(IV) alkoxides derived from β-donor-substituted alcohols. The donor atom \boldsymbol{X} in the alkoxy ligand enables an intramolecular donor-acceptor Te···X interaction, which stabilises the di- and trichlorotellurium alkoxides, but reduces the reactivity of the tellurium atom towards nucleophiles, a result from which an associative-dissociative mechanism was inferred for the nucleophilic substitution in TeCl₄. In contrast to this, all OiPr ligands of Te(OiPr)4 can be exchanged by reaction with HOCH2CH2XMen. As was shown by multinuclear NMR studies, the kinetics and equilibrium of the reaction of Te(OiPr)₄ with HOCH₂CH₂XMe_n depend substantially on X and thus demonstrate the presence of Te...X interactions in solution. The molecular and crystal structure of 3 was investigated by single-crystal X-ray diffraction. In the solid state of 3, two kinds of molecules are present, differing in the coordination modes of the Te atoms. In each molecule, two intramolecular dative Te--O bonds [264.3(2)-267.7(2) pm] exist, approximately trans to the covalent Te-O bonds. Two C_1 -symmetric molecules are linked by intermolecular Te···Cl contacts to a third, namely the C_2 -symmetric molecule, giving coordination numbers of six and seven for the Te atoms of the C_2 - and C_1 -symmetric moieties, respectively. Ab initio (MP2/LANL2DZP) geometry optimizations and thermochemical calculations of the model compounds $TeCl_3OCH_2CH_2XH_n$ $(4\alpha-4\gamma)$ and H)₃OCH₂CH₂XH_n (1α - 1γ) as well as an analysis of the bonds in terms of natural bond orbitals were performed in order to study the nature of the Te...X bond and its dependence on conformational restraints. The donor power of the N atom was found to be greater than those of the O and S atoms and the Te···X interactions are stronger for TeCl₃OCH₂CH₂XH₂ than for $Te(OH)_3OCH_2CH_2XH_2$; σ -type $n(X)-\sigma^*(Te-E)$ interactions are important for the Te...X bond and compete with π -type n(O)- σ^* (Te-E) interactions, which in turn are of importance for the E-Te-O-C conformation (E = O, Cl).

(© Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002)

Introduction

In contrast to SiCl₄, GeCl₄ or SnCl₄, TeCl₄ does not react with alcohols themselves by means of partial or full exchange of the chloride ligands by alkoxy groups, but dissolves in many alcohols without decomposition.^[1] In order to obtain tellurium(IV) tetraalkoxides, Te(OR)₄, from TeCl₄ and the appropriate alcohol, HOR, the latter has to be activated. This activation can either be achieved by *O*-silylation or *O*-metallation of the alcohol prior to the synthesis or by addition of tertiary amines which drive the reaction by formation of the corresponding ammonium chloride.^[2-4] Alternatively, Te(OR)₄ can be derived from Te(OR')₄ and HOR by ligand exchange according to Equation (1).

$$Te(OR')_4 + 4 HOR \stackrel{\rightarrow}{\leftarrow} Te(OR)_4 + 4 HOR' \tag{1}$$

Gottlieb and co-workers showed that the equilibrium in Equation (1) is quickly reached for R, R' = Me, Et in chloroform or benzene as solvents. They also found out that Equation (1) showed a statistical product distribution characteristic of thermally neutral reactions.^[5] The equilibrium according to Equation (1) can be shifted towards the right if HOR' can be removed by distillation or $Te(OR)_4$ is precipitated from the reaction mixture.^[6,7]

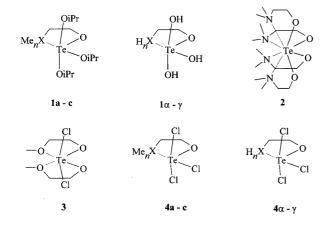
Reaction of $TeCl_4$ with silylated alcohols according to Equation (2) represents a good approach to the synthesis of chlorotellurium(IV) alkoxides, $TeCl_{4-n}(OR)_n$. [3]

$$TeCl_4 + n Me_3SiOR \rightarrow TeCl_{4-n}(OR)_n + n Me_3SiCl$$
 (2)

The chlorotrimethylsilane which is formed as a by-product, can easily be distilled off together with the solvent. Trichlorotellurium(IV) alkoxides like trichlorotellurium(IV)

[[]a] Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10–14, 55099 Mainz, Germany

[[]b] Institut für Organische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany


2-propoxide or ethoxide, which are reported to be unstable, could be stabilised as 1:1 adducts with THF or ethyl acetate.^[7]

A number of tellurium compounds exhibit intramolecular donor-acceptor interactions, i.e. a Lewis acidic Te centre. [8,9] Concerning organotellurenyl halides, for example, these interactions enable the isolation of these otherwise unstable compounds. We were thus interested to see whether tellurium(IV) alkoxides and especially chlorotellurium(IV) alkoxides could be stabilised by such intramolecular donor-acceptor interactions and how these interactions would influence structure and reactivity.

Results and Discussion

Synthesis and ¹²⁵Te NMR Spectra

Te(O*i*Pr)₃OCH₂CH₂NMe₂ (1a), Te(O*i*Pr)₃OCH₂CH₂L OMe (1b) and Te(O*i*Pr)₃OCH₂CH₂SMe (1c) (Scheme 1) were prepared from equimolar amounts of Te(O*i*Pr)₄ and the β-donor alcohols HOCH₂CH₂NMe₂, HOCH₂CH₂OMe and HOCH₂CH₂SMe, respectively, by means of stirring the reactants in benzene and distilling off all volatile products under reduced pressure. Te(OCH₂CH₂NMe₂)₄ (2) could be prepared in this way as well by treating Te(O*i*Pr)₄ with 4 equiv. of HOCH₂CH₂NMe₂. Reactions of equimolar amounts of TeCl₄ and the silylated β-donor alcohols Me₃Si-OCH₂CH₂XMe_n (X = N, n = 2; X = O or S, n = 1) resulted in good yields of the trichlorotellurium(IV) alkoxides TeCl₃OCH₂CH₂NMe₂ (4a), TeCl₃OCH₂CH₂OMe (4b) and TeCl₃OCH₂CH₂SMe (4c) (Scheme 1).

Scheme 1. Structural formulae of compounds and model compounds presented in this paper

Reaction of TeCl₄ with 2 or more equiv. of Me₃SiOCH₂. CH₂OMe resulted in the formation of TeCl₂(OCH₂CH₂. OMe)₂ (3), whose crystal structure was solved and refined (see below).

At room temperature, 1a-c and 2 are viscous colourless liquids that are quickly hydrolysed when exposed to air, whereas 3 and 4a-c are colourless or slightly grey solids which are less sensitive to air, but decompose on melting. The positions of the $\nu(\text{Te}-\text{Cl})$ bands in the Raman spec-

trum of **4a** indicate an aggregation in the solid state via Te-Cl···Te bridges. Whereas **4b** easily dissolves in chloroform, **4c** is soluble only in more polar solvents like THF. Compound **4a** is not soluble without decomposition, hence no high-resolution NMR spectra could be obtained for it.

When treating TeCl₄ with Me₃SiOCH₂CH₂NMe₂ and Me₃SiOCH₂CH₂SMe, no more than one Cl atom could be exchanged for an OCH₂CH₂XMe_n group, even if an excess of the silylated alcohol was used and longer reaction times were applied. This is in contrast to the reaction of Te(O*i*Pr)₄ with HOCH₂CH₂NMe₂, where all O*i*Pr groups could be substituted by OCH₂CH₂NMe₂ groups, leading to compound 2. Thus, the conclusion could be drawn that the nucleophilic substitution reactions with the Te atoms in TeCl₄ and Te(O*i*Pr)₄ proceed with different mechanisms and that the intramolecular Te···N interactions in 1a and 4a exhibit different strengths (see also the ab initio studies below). For TeCl₄, an associative-dissociative mechanism (Scheme 2) is assumed, whereas for Te(O*i*Pr)₄ a dissociative-associative mechanism (Scheme 3) is more likely.

Scheme 2. Proposed associative-dissociative mechanism for the nucleophilic substitution at $TeCl_4$

In the associative-dissociative mechanism, the intramolecular Te···N bond shields the Te atom and reduces its Lewis acidity, so that interaction with the O atom of the silyl ether is not strong enough to cleave the O-Si bond.

For $\text{Te}(OiPr)_4$, a hydrogen bond assisted cleavage of a Te-O bond is supposed to precede the transfer of a proton from HOR^1 to OR^- and the addition of the thus formed OR^{1-} to $[\text{Te}(OR)_3]^+$. The different mechanisms of the nucleophilic substitution for TeCl_4 and $\text{Te}(OiPr)_4$ are due to a smaller Lewis acidity of $\text{Te}(OiPr)_4$ than TeCl_4 and a greater basicity of OR than the Cl ligand.

Whereas the ¹²⁵Te NMR shift of **1b** (δ = 1540 ppm) is very similar to that of Te(O*i*Pr)₄ (δ = 1538 ppm), signals of **1c** (δ = 1519 ppm), **1a** (δ = 1454 ppm) and **2** (δ = 1410 ppm) exhibit a significant high-field shift. This effect is attributed to an increased coordination number of the tellurium atom due to intramolecular Te···X interactions. This interpretation is supported by the observation that on addition of an equimolar amount of H₂SO₄ to a solution of **1a** in CDCl₃, the ¹²⁵Te NMR signal undergoes a low-field shift to δ = 1558 ppm, an effect which is attributed to protonation of the nitrogen atom with subsequent cleavage of the Te···N bond, according to Equation (3).

Scheme 3. Proposed dissociative-associative mechanism for the nucleophilic substitution with $Te(OiPr)_4$ (R = OiPr)

$$1a + H2SO4 \rightarrow [Te(OiPr)3OCH2CH2NHMe2][HSO4]$$
 (3)

The chemical shifts of 1a, 1b and 1c, and their comparison with that of $Te(OiPr)_4$ indicate an increase in $Te\cdots X$ bond strength in the order X = N > S > O. The difference between the ¹²⁵Te NMR shifts of 1a and 2 is attributed to a further increase in the coordination number of the Te atom and to the different inductive effects of the OiPr and the $OCH_2CH_2NMe_2$ groups. Each of the intramolecular $Te\cdots N$ interactions in 2 must be weaker than the one in 1a, since the difference in the ¹²⁵Te NMR shifts of 1a and 2 is only half as much as that between 1a and $Te(OiPr)_4$.

In order to investigate the molecular dynamics of the Te···X interactions, ^{125}Te NMR spectra of **1a**, **1b** and **1c** were recorded at different temperatures (Table 1). The data shows $\delta(^{125}\text{Te})$ of **1a** to have a large, $\delta(^{125}\text{Te})$ of **1c** a small, and $\delta(^{125}\text{Te})$ of **1b** to have hardly any positive temperature gradient. As the temperature increases, the differences in

Table 1. 125Te NMR shifts of 1a-c at different temperatures

T/°C	1a	1b	1c
-30	1426	1538	1511
-10	1434	1538	1511
10	1445	1539	1516
25	1453	1540	1519
35	1458		

 $\delta(^{125}\text{Te})$ of **1a**, **1b** and **1c** decrease, a fact attributed to a substantial weakening of the Te···X interactions at higher temperatures.

Ligand Exchange of Te(OiPr)₄ with HOCH₂CH₂XMe_n

The equilibria and kinetics of the ligand-exchange reactions according to Equations (4a)–(4d) were investigated by means of NMR titration of solutions of $Te(OiPr)_4$ in $CDCl_3$ with $HOCH_2CH_2XMe_n$ [X = N, n = 2; X = O or S, n = 1; in Equations (4a)–(4d), R' = $CH_2CH_2XMe_n$].

$$Te(OiPr)_4 + HOR' \stackrel{\rightarrow}{\leftarrow} Te(OiPr)_3OR' + HOiPr$$
 (4a)

$$Te(OiPr)_3OR' + HOR' \stackrel{\rightarrow}{=} Te(OiPr)_2(OR')_2 + HOiPr$$
 (4b)

$$Te(OiPr)_2(OR')_2 + HOR' \stackrel{\rightarrow}{\leftarrow} Te(OiPr)(OR')_3 + HOiPr$$
 (4c)

$$Te(OiPr)(OR')_3 + HOR' \stackrel{\rightarrow}{\leftarrow} Te(OR')_4 + HOiPr$$
 (4d)

With X = N, six solutions were investigated, containing a given amount of Te(OiPr)₄ in CDCl₃ but different amounts of HOCH₂CH₂NMe₂. Figure 1 shows the ¹²⁵Te NMR spectra of these solutions, marked A-F. Five different signals can be observed, attributed to the five species of $Te(OiPr)_{4-n}(OCH_2CH_2NMe_2)_n$ (n = 0-4), with the signals of $Te(OiPr)_4$ (n = 0), **1a** (n = 1) and **2** (n = 4) known from the spectra of the pure compounds. The single species of $Te(OiPr)_{4-n}(OCH_2CH_2NMe_2)_n$ are sufficiently stable on the NMR time scale towards ligand exchange among each other or with free alcohol, so that no coalescence of their ¹²⁵Te NMR signals occurs. Unlike these results, the ligand exchange between Te(OiPr)4 and HOMe, HOEt or HOiPr, respectively,^[5] and that between Te(OiPr)₄ and Te(-OMe)₄,^[10] proceed at such a rate at room temperature that only averaged ¹²⁵Te NMR signals could be observed.

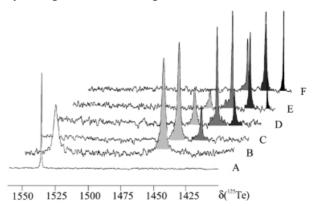


Figure 1. ¹²⁵Te NMR spectra of a solution of Te(O*i*Pr)₄ in CDCl₃ with 0.00 (A), 0.65 (B), 1.26 (C), 1.97 (D), 2.77 (E) and 3.89 (F) equiv. of HOCH₂CH₂NMe₂; the different signals correspond to the entire species of Te(O*i*Pr)_{4-n}(OCH₂CH₂NMe₂)_n (n=0-4); the darkening of the peaks' grey shadings corresponds to an increase in n

The ¹H NMR spectrum of solution B lacks any signal attributable to HOCH₂CH₂NMe₂, showing that the equilib-

rium according to Equation (4a) with X = N is shifted far towards the right side. Thus, formation of $\mathbf{1a}$ from Te(O-iPr)₄ and HOCH₂CH₂NMe₂ is favoured thermodynamically. Since the signal of HOCH₂CH₂NMe₂ is missing, no equilibrium constant could be obtained from the spectral intensities.

The equilibrium constants for Equations (4b)–(4d) were estimated considering the relative abundance of $Te(iPrO)_{4-n}(OCH_2CH_2NMe_2)_n$, HOiPr and $HOCH_2CH_2NMe_2$ in solutions C–F, derived from the intensities of their signals. Due to experimental errors, the values obtained for K_{4b} , K_{4c} and K_{4d} vary between the different solutions as described in the following: $35 < K_{4b} < 44$, $5.4 < K_{4c} < 8.1$, and $1.1 < K_{4d} < 1.4$. Hence, substitution of OiPr for $OCH_2CH_2NMe_2$ is favoured for all compounds $Te(OiPr)_{4-n}(OCH_2CH_2NMe_2)_n$ (n = 0-3). The more $OCH_2CH_2NMe_2$ groups, however, are bound to the Te atom, the less favourably substitution takes place.

Information about the kinetics of reactions according to Equations (4a) and (4b) was obtained from ¹H NMR spectra. Sample B contains the following three moieties with isopropoxy groups: Te(OiPr)₄, 1a and HOiPr. Nevertheless, only a single set of isopropoxy signals was observed, leading to the assumption of a rapid exchange of OiPr groups between the different species. As the concentration of HOCH₂CH₂NMe₂ increases, two sets of signals were observed for each of the OiPr and the OCH₂CH₂NMe₂ groups. One set of each could be attributed to the free alcohols, HOiPr and HOCH₂CH₂NMe₂, the other one was due to an OiPr and OCH₂CH₂NMe₂ group, respectively, both being bound to the Te atom.

Hence it follows that the exchange rate of OiPr between HOiPr and Te(OiPr)_{4-n}(OCH₂CH₂NMe₂)_n decreases with increasing *n*, a fact attributed to the shielding of the tellurium atom by the OCH₂CH₂NMe₂ ligands. This is also reflected in the widths of the ¹²⁵Te signals, which become sharper with increasing *n*. It is noteworthy that each of the NMe₂, NCH₂ and OCH₂ groups of **2** gives rise to more than a single signal in the ¹H NMR spectrum, with the NMe₂ and OCH₂ groups also giving two signals each in the ¹³C NMR spectrum. This is seen to be due to differences between equatorial and apical ligands and due to differences between coordinating and noncoordinating OCH₂CH₂NMe₂ groups.

In contrast to the NMR titration of $Te(OiPr)_4$ with $HOCH_2CH_2NMe_2$, neither titration of $Te(OiPr)_4$ with $HOCH_2CH_2OMe$ nor with $HOCH_2CH_2SMe$ leads to separated signals for $Te(OiPr)_{4-n}(OCH_2CH_2SMe)_n$ (X = O or S, n = 0-4) in the ^{125}Te NMR spectra of the respective solutions (not depicted). The addition of $HOCH_2CH_2OMe$ to a solution of $Te(OiPr)_4$ in $CDCl_3$ led to an enormous line broadening with hardly any change of the chemical shift. This result is presumably due to a fast exchange between the OiPr and the OCH_2CH_2OMe ligands, assuming that all species $Te(OiPr)_{4-n}(OCH_2CH_2OMe)_n$ (n = 0-4) have a similar chemical shift, which could at least be shown for n = 0 [$Te(OiPr)_4$, $\delta = 1538$ ppm] and n = 1 (1b, $\delta = 1540$ ppm). Titration of a solution of $Te(OiPr)_4$ in $CDCl_3$

with HOCH₂CH₂SMe led to a significant broadening and a high-field shift of the 125 Te NMR signal. At room temperature, no signal could be observed with 5.5 equiv. of the alcohol added, while at -20 °C a single broad signal appeared at $\delta = 1480$ ppm. These results are explained as well through a rapid exchange between the OiPr and the OCH₂CH₂SMe ligands, the high-field shift being due to the different chemical shifts of Te(O*i*Pr)₄ and 1c ($\delta = 1519$ ppm). Similar to the 125 Te NMR spectra, the 1 H NMR spectra of the solutions of Te(O*i*Pr)₄ with either HOCH₂CH₂OMe or HOCH₂CH₂SMe give only averaged signals for chemically different O*i*Pr or OCH₂CH₂XMe groups.

Crystal and Molecular Structures of 3

In Figure 2, a section of the crystal structure of **3** is shown, illustrating the coordination of the Te atoms and the intermolecular association of the molecules. In the solid state, there are two nonequivalent molecules of **3**, differing in the coordination modes of the Te atoms as well as in their conformations.

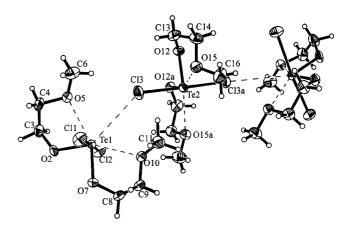


Figure 2. Molecular structure of $\bf 3$ in the solid state; displacement ellipsoids are at the 50% probability level

Tel exhibits heptacoordination with a distorted pentagonal-bipyramidal configuration (see bond angles in Table 2); Te1, O2, O5, O7 and O10 are nearly in a plane. Due to the effect of the lone pair of Te1, Cl3 lies slightly outside the plane. The two methyl groups bound to O5 and O10, respectively, are cis with respect to the O5-Te1-O10 plane. In contrast to Te1, Te2 is hexacoordinate with a stereochemically active lone pair, leading to a distorted pseudo-pentagonal-bipyramidal configuration; Te2 lies on a twofold axis and the entire molecule exhibits C_2 symmetry. Hence, the methyl groups bound to O15 and O15a, respectively, are trans with respect to the O15-Te2-O15a plane. Considering the covalent bonds of the Te atoms only, Tel and Te2 exhibit pseudo-trigonal-bipyramidal configurations, in accordance with the VSEPR rules; the Cl atoms are in the apical positions, the O atoms and the lone pair are situated in the equatorial positions.

Table 2. Selected XRD and ab initio (MP2/LANL2DZP) atomic distances (in pm) and bonding angles (in °) of 3

	XRD		XRD	Ab initio
Te1-O2	191.2(2)	Te2-O12	191.5(2)	193.4
Te1-O7	192.4(2)	Te2-Cl3	248.5(1)	249.0
Te1-C11	247.5(1)	Te2···O15	266.6(2)	268.0
Te1-C12	253.2(1)	O12-Te2-O12a	84.4(1)	84.2
Te1···O5	264.3(2)	C13-Te2-C13a	178.3(1)	178.2
Te1O10	267.4(2)	O15···Te2-O12a	155.9(1)	154.7
Te1C13	357.7(1)	O15···Te2···O15a	131.9(1)	133.4
O2-Te1-O7	84.4(1)	C13-Te2-O12	88.8(1)	89.8
C11-Te1-C12	175.1(1)			
O2-Te1···O5	71.7(1)			
O7-Te1O10	71.8(1)			
O5···Te1···O10	130.5(1)			
C11-Te1-O2	88.2(1)			
C12-Te1-O7	89.0(1)			
C11-Te1C13	104.1(1)			
C12-Te1C13	80.7(1)			
O5-Te1Cl3	69.5(1)			
O10-Te1•••C13	67.4(1)			

The molecular structure of 3, restrained to C_2 symmetry, was optimised by ab initio methods (MP2/LANL2DZP). The optimised molecular structure agrees quite well with that of the C_2 -symmetric unit in the solid state, despite the different phases (isolated vs. solid state) and the different structural types (r_e vs. r_a). An analysis of the Te···O bonds in terms of natural bond orbital interactions shows that these bonds are mainly due to $n(O) - \sigma^*(Te-O)$ interactions between one nonbonding orbital of the donor O atom and the antibonding orbital of the Te-O bond in *trans* position to it. The energy for both of these interactions was estimated to be 72 kJ·mol⁻¹.

Ab initio Studies

With the model compounds $Te(OH)_3OCH_2CH_2NH_2$ (1 α), $Te(OH)_3OCH_2CH_2OH$ (1 β), $Te(OH)_3OCH_2CH_2SH$ (1 γ), $TeCl_3OCH_2CH_2NH_2$ (4 α), $TeCl_3OCH_2CH_2OH$ (4 β), and $TeCl_3OCH_2CH_2SH$ (4 γ), the intramolecular $Te\cdots X$ (X = N, O, S) interactions were investigated in detail. The following two conformations were taken into consideration for each of the model compounds: one exhibiting a $Te\cdots X$ bond, and the second without such an interaction. The optimised molecular structures are depicted in Figures 3 and 4, and structural and energy data are given in Tables 3 and 4.

If only the covalently bound ligands are considered, the Te atoms exhibit pseudo-trigonal-bipyramidal configurations, in accordance with the VSEPR rules. The lone pair of the Te atom occupies an equatorial position, and for 4α , 4β and 4γ , the apical positions are occupied by two Cl atoms which exhibit a greater distance to the Te atom than the equatorial Cl atom. An exothermal process for all model compounds is the conversion of the conformation without the Te···X bond into the conformation with the Te···X bond. From the ΔH^{298} values given in Tables 3 and

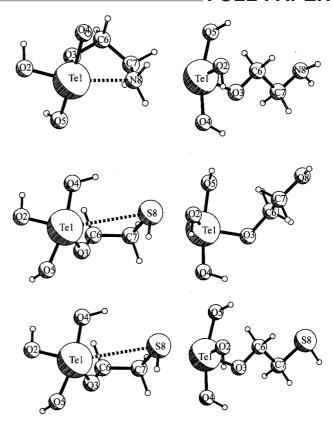


Figure 3. Ab initio molecular structures of model compounds Te- $(OH)_3OCH_2CH_2NH_2$ (1 α), Te($OH)_3OCH_2CH_2OH$ (1 β) and Te($OH)_3OCH_2CH_2SH$ (1 γ) with Te···X bond (on the left) and without Te···X bond (on the right; X = N8, O8, S8)

4 it follows that Te···X bonds are stronger for the trichlorotellurium(IV) alkoxides $4\alpha-4\gamma$ than for the tellurium(IV) tetraalkoxides $1\alpha-1\gamma$, i.e. the Te atom is a better electronpair acceptor in the former than in the latter. Furthermore, the N atom is a much better donor than the O or the S atom.

The results derived from thermochemical data are confirmed by an NBO analysis of the Te…X bond and by the structural parameters. The interaction of an occupied, nonbonding orbital of the donor atom, n(X), with the unoccupied, anti-bonding orbital of the Te-O or Te-Cl bond in the trans position, $\sigma^*(\text{Te-O}_{trans})$ or $\sigma^*(\text{Te-Cl}_{trans})$, is important for the Te···X bonds in $Te(OH)_3OCH_2CH_2XH_n$ and $TeCl_3OCH_2CH_2XH_n$, respectively. The energies of the $n(X) - \sigma^*(Te - Cl_{\textit{trans}})$ interactions in $4\alpha - \gamma$ are higher than those of the $n(X) - \sigma^*(Te - O_{trans})$ interactions in $1\alpha - \gamma$, and also higher when X is N than when X is O or S. According to second-order perturbation theory, the smaller the energy difference and the greater the overlap integral between two orbitals, the greater is the energy of their interaction. Both factors favour the interaction of n(N) compared to n(O) or n(S) with $\sigma^*(\text{Te-Cl}_{trans})$ or $\sigma^*(\text{Te-O}_{trans})$.

The structural parameters and their differences between the two conformations of the same model compound also serve as a measure of the strength of the Te···X bond. In the conformations of 1α , 1β and $4\alpha-\gamma$ with a Te···X

Table 3. Selected ab initio structural parameters (distances in pm, angles in °), $n_p(O) - \sigma^*(Te-O)$ and $n(X) - \sigma^*(Te-O)$ energies of interaction and thermochemical data (in kJ·mol⁻¹) of the model compounds 1α , 1β and 1γ , with (a) and without (b) Te···X bond (X = N, O, S, see Figure 3)

(a) ^[a]			
(-)	1α with Te···N bond	1β with Te···O bond	1γ with Te···S bond
Te1-O2/Te1-O3	194.2/196.6	192.8/195.8	192.6/195.5
Te1-O4/Te1-O5	205.7/198.7	202.9/196.4	203.1/195.9
Tel···X	261.4	312.3	385.6
<i>[</i> [b]	1.26	1.54	1.60
O2-Te1-O3	87.8	101.5	102.4
O2-Te1···X	159.6	137.9	135.1
O3-C6-C7-X	-56.0	-64.2	-63.4
C6-O3-Te1-O2	147.1	100.5	79.4
$n_p(O3) - \sigma^*(Te1 - O2)$	13	29	31
$n(X) - \sigma^*(Te1 - O2)$	68	[c]	[c]
$\Delta H^{298[d]}$	-18	-15	-6
(b)			
	1α without Te···N bond	1β without Te···O bond	1γ without Te···S bond
Te1-O2/Te1-O3	194.1/194.9	194.2/195.1	193.9/195.5
Te1-O4/Te1-O5	200.3/198.0	200.2/198.2	200.0/198.1
O2-Te1-O3	103.8	104.6	104.3
O4-Te1-O5	163.5	162.8	162.9
O3-C6-C7-X	-178.2	177.2	-179.4
C6-O3-Te1-O2	-80.5	-79.1	-80.3
$n_p(O3) - \sigma^*(Te1 - O2)$	32	32	31

 $^{^{[}a]}$ X = N8, O8 and S8 for 1α , 1β and 1γ , respectively. $^{[b]}$ $l = (\text{Te···X})/[r_{\text{cov}}(\text{Te}) + r_{\text{cov}}(\text{X})]$. Covalent radii, r_{kov} , according to Sutton (70, 66, 104 and 137 pm for N, O, S and Te, respectively). Less than 5 kJ·mol^{-1} . $^{[d]}$ $\Delta H^{298} = H^{298}(\text{with Te···X-bond}) - H^{298}(\text{without Te···X-bond})$.

Table 4. Selected ab initio structural parameters (distances in pm, angles in °), $n_p(O) - \sigma^*(Te-Cl)$ and $n(X) - \sigma^*(Te-Cl)$ energies of interaction and thermochemical data (in kJ·mol⁻¹) of the model compounds 4α , 4β and 4γ , with (a) and without (b) Te···X bond (X = N, O, S, see Figure 4)

$(a)^{[a]}$			
(11)	4a with TeN bond	4β with Te···O bond	4γ with Te···S bond
Te1-C12	236.5	232.8	233.5 245.7/245.8
Te1-Cl3/Te1-Cl4	246.7/249.3	247.8/245.0	
Te1-O5	194.6	193.7	194.1
Te1···X	240.2	251.5	302.2 1.25 89.8 164.9 -63.6 149.1
<i>[</i> [b]	1.16	1.24	
C12-Te1-O5	85.2 162.3	88.8	
Cl2-Te1···X		161.8	
O3-C6-C7-X -53.4 Cl2-Te1-O5-C6 161.5	-53.4	-57.9 161.2 6	
	161.5		
$n_p(O3) - \sigma^*(Te1 - Cl2)$	4		
$n(X) - \sigma^*(Tel - Cl2)$	184	89	111
ΔH^{298} [c]	-84	-42	-19
(b)			
	4α	4β	4γ
	without Te···N bond	without TeO bond	without Te···S bond
Te1-C12	233.1	232.9	232.9
Te1-C13/Te1-C14	245.1/241.1	244.3/241.5	241.2/244.8
Te1-O5	191.2	191.1	191.4
C12-Te1-O5	99.7	99.8	100.0
O3-C6-C7-X	178.9	177.8	179.1
Cl2-Te1-O5-C6	-62.5	-63.0	61.9
$n_p(O3) - \sigma^*(Te1 - Cl2)$	45	45	44

[[]a] X = N8, O8 and S8 for 4α , 4β and 4γ , respectively. [b] $l = (\text{Te···}X)/[r_{\text{cov}}(\text{Te}) + r_{\text{cov}}(X)]$. Covalent radii, r_{kov} , according to Sutton (70, 66, 104 and 137 pm for N, O, S and Te, respectively). [11] [c] $\Delta H^{298} = H^{298}(\text{with Te····}X\text{-bond}) - H^{298}(\text{without Te····}X\text{-bond})$.

Table 5. Crystal data, data collection and correction, structure solution and refinement for 3

Empirical formula $M/g \cdot mol^{-1}$	$C_6H_{14}O_4Cl_2Te$ 348.67
e	$0.06 \times 0.19 \times 0.35$
Cryst. size/mm	
Cryst. system	monoclinic
Space group	C2/c
Z	12
θ range and limiting indices	$4^{\circ} \le 2\theta \le 54^{\circ}$
	$-37 \le h \le 37$
	$-9 \le k \le 9$
	$-29 \le l \le 29$
T/K	185
$\rho_{\rm calcd.}/g\cdot {\rm cm}^{-3}$	1.958
a/nm	2.82632(4)
b/nm	0.72874(3)
c/nm	2.22623(11)
β/°	129.285(1)
V/nm ³	3.54903(11)
Reflections meas.[a]	45588
Unique reflections	4407
μ/mm ⁻¹	2.95
Reflections observed	3709
Refined parameters	186
$R [F > 4\sigma(F)]^{[b]}$	0.0275
$wR^{2^{[c]}}$	0.0642
Goodness-of-fit on F^2	1.136
Max./min. peak in diff.	-1.55/0.78
Fourier synthesis/10 ⁻³ e·nm ⁻³	1.55,6.76
1 Curier Synthesis, 10 Cillin	

^[a] Lorentz and polarisation corrections were performed on the data. Absorption correction was performed with the MULABS program. ^[17] Hydrogen atoms were localised and isotropically refined by using a riding model. All non-hydrogen atoms were refined anisotropically. ^[b] $R = \Sigma ||F_o| - F_c||\Sigma|F_o|$. ^[c] $wR2 = \{\Sigma[w(F_o^2 - F_c^2)^2]|\Sigma[w(F_o)^2]^2\}^{1/2}$.

"bond", all Te···X distances are smaller than the sum of the van der Waals radii (155, 152, 180 and 206 pm for N, O, S and Te, respectively^[12]). The Te···N distance in 4α corresponds quite well to that in o-TeCl₃[C₆H₄CH(Me)NMe₂] [241.1(7) pm].^[13] The Te···S bond in 1y nearly equals the sum of the van der Waals radii and the term "bond" has to be dealt with carefully. To compare the Te···X distance for different donor atoms with different covalent radii, the relative length, l, is used (for definition see Tables 3 and 4). [14] Since the bond with the smaller l is the stronger one, the Te···X bonds are again found to be stronger with X = N than with X = O or S and stronger in $4\alpha - \gamma$ than in $1\alpha - \gamma$. Accordingly, the Te1-Cl2 bond in the *trans* position to the Te1...X8 bond is significantly longer in 4α than in 4β or 4y, demonstrating the stronger trans effect of the N atom compared to the O or S atom.

Optimal π -type $n_p(O3) - \sigma^*(Te1 - E2)$ ($1\alpha - \gamma$: E = O; $4\alpha - \gamma$: E = C1) interactions are not compatible with optimal σ -type $n(X8) - \sigma^*(Te1 - E2)$ interactions (see Figure 5). In the conformation without a Te···X "bond", the absolute values of the C6-O3-Te1-E2 torsion angles are between 60 and 80° and permit a good overlap between $n_p(O3)$ and $\sigma^*(Te1-E2)$. In the conformations with a Te···X "bond" the five-membered ring formed requires enlarged C6-O3-Te1-E2 torsion angles in order to obtain X in trans position to the Te1-E2 bond for a good σ -type

 $n(X8)-\sigma^*(Te1-E2)$ interaction. The π -type $n_p(O3)-\sigma^*$ (Te1-E2) interaction is significantly reduced in such a conformation (see Tables 3 and 4, b), but at least for 1α and $4\alpha-\gamma$ it is more than compensated by the $n(X8)-\sigma^*$ (Te1-E2) interaction.

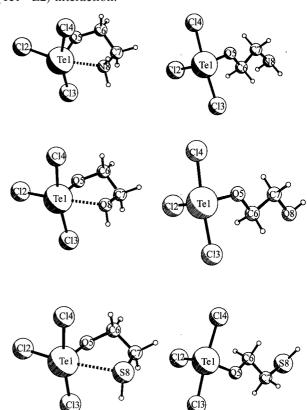


Figure 4. Ab initio molecular structures of model compounds Te-Cl₃OCH₂CH₂NH₂ (4α) TeCl₃OCH₂CH₂OH (4β) and Te-Cl₃OCH₂CH₂SH (4γ) with Te···X bond (on the left) and without Te···X bond (on the right; X = N8, O8, S8)

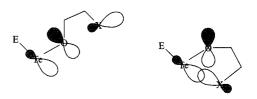


Figure 5. Conformations of the ETeOCH₂CH₂X fragment for optimum π -type $n_p(O) - \sigma^*(Te-E)$ (on the left) and σ -type $n(X) - \sigma^*(Te-E)$ interactions (on the right), respectively

Conclusion

Tellurium(IV) tetraalkoxides, dichlorotellurium(IV) dial-koxides and trichlorotellurium(IV) alkoxides derived from β -donor-substituted alcohols are stabilised kinetically and thermodynamically by intramolecular Te···X interactions. In the trichlorotellurium(IV) alkoxides, this interaction re-

duces the reactivity of the Te atom towards nucleophiles and only with X = O substitution of a second Cl atom was feasible, leading to $TeCl_2(OCH_2CH_2OMe)_2$. Of all donor atoms investigated, nitrogen forms the strongest $Te\cdots X$ interaction. Substitution of Cl for alkoxide ligands substantially reduces the acceptor power of the Te atom; π -type $n_p(O) - \sigma^*(Te - E)$ interactions and σ -type $n_p(X) - \sigma^*(Te - E)$ interactions compete with each other in $TeCl_3$ - $(OCH_2CH_2XH_n)$ (E = Cl) and $Te(OH)_3(OCH_2CH_2XH_n)$ (E = O), and the stronger one determines the conformation.

Experimental Section

General Procedures: All procedures were carried out under an inert gas or under vacuum, using carefully dried glassware and solvents purified according to standard methods. $Te(OiPr)_4$ was prepared according to Mehrotra et al.^[6] NMR: Bruker DRX 400, $B_1(^{1}H) = 400.000$, $B_1(^{13}C) = 100.577$, $B_1(^{125}Te) = 126.387$ MHz; standards: TMS (^{1}H , ^{13}C) and $Te(CH_3)_2$ (^{125}Te). Raman: SPEX 1402, excitation with a Kr Laser (647 nm). CHNS analyses were performed with an Elemental Vario EL2.

Syntheses

Tellurium 2-(Dimethylamino)ethoxide Tris(2-propoxide), Te(OiPr)₃-OCH₂CH₂NMe₂ (1a): A solution of 2-(dimethylamino)ethanol, HOCH₂CH₂NMe₂ (0.48 g, 5.3 mmol), in 30 mL of benzene was slowly added to a stirred solution of Te(OiPr)₄ (1.94 g, 5.3 mmol) in 50 mL of benzene. Subsequently, the benzene and 2-propanol formed during the reaction were distilled off in a slight vacuum; 1a was isolated from the crude product by a fractionated distillation under high vacuum (113 °C/1.5 10⁻² mbar, partial decomp.). Yield: 1.54 g (73.9%). ¹H NMR (CDCl₃): $\delta = 1.16$ [d, ³ $J_{H,H} = 6.12$ Hz, 18 H, OCH(C H_3)₂], 2.41 [s, 6 H, N(C H_3)₂], 2.66 (t, ${}^3J_{H,H} = 5.2$ Hz, 2 H, NC H_2), 4.17 (t, ${}^3J_{H,H} = 5.2 \text{ Hz}$, 2 H, OC H_2), 4.40 [m, 3 H, $OCH(CH_3)_2$] ppm. $^{13}C\{^1H\}$ NMR (CDCl₃): $\delta = 26.2$ [OCH(CH₃)₂], 44.0 [N(CH₃)₂], 59.2 (NCH₂), 61.5 (OCH₂), 64.9 $[OCH(CH_3)_2]$ ppm. ¹²⁵Te{¹H} NMR (CDCl₃): $\delta = 1454$ ppm. C₁₃H₃₁NO₄Te (393.00): calcd. C 39.73, H 7.95, N 3.56; found C 40.47, H 7.74 N 3.24.

Tellurium 2-(Methoxy)ethoxide Tris(2-propoxide), Te(OiPr)₃OCH₂₋ CH₂OMe (1b): The preparation was carried out by analogy to that of 1a, using 2-(methoxy)ethanol, HOCH₂CH₂OMe (0.28 g, 3.7 mmol), and Te(OiPr)₄ (1.35 g, 3.7 mmol). The colourless and viscous crude product was washed with a small amount of dietyl ether and dried in vacuo. Yield: 1.25 g (88.9%). ¹H NMR (C₆D₆): $\delta = 1.33 \text{ [d, }^{3}J_{H,H} = 6.1 \text{ Hz}, 18 \text{ H, OCH}(CH_{3})_{2}], 3.13 \text{ (s, 3 H,}$ OCH_3), 3.30 (t, ${}^3J_{H,H} = 4.7 \text{ Hz}$, 2 H, H_3COCH_2), 4.21 (t, ${}^3J_{H,H} =$ 4.7 Hz, 2 H, TeOC H_2), 4.76 [sept, ${}^3J_{H,H} = 6.1$ Hz, 3 H, $OCH(CH_3)_2$] ppm. ¹³ $C\{^1H\}$ NMR (C_6D_6) : $\delta = 26.1$ [OCH $(CH_3)_2$], 57.9 (H₃CO), 62.6 (TeOCH₂), 65.4 [OCH(CH₃)₂], 74.2 (H₃COCH₂) ppm. $^{125}\text{Te}\{^{1}\text{H}\}$ NMR (C_6D_6): $\delta = 1540$ ppm. $C_{12}H_{28}O_5\text{Te}$ (379.94): C 37.94, H 7.43; found C 33.68, H 6.34%. The deviation between calculated and found data for the C,H analysis of compound 1b is due to the thermal instability of the compound and its sensitivity to air.

Tellurium 2-(Methylsulfenyl)ethoxide Tris(2-propoxide), Te(O*i*Pr)₃-OCH₂CH₂SMe (1c): The preparation was carried out by analogy to that of 1a, using (2-methylsulfenyl)ethanol, HOCH₂CH₂. SMe (0.37 g, 4.0 mmol), and Te(O*i*Pr)₄ (1.48 g, 4.1 mmol). The col-

ourless and viscous crude product was washed with a small amount of diethyl ether and dried in vacuo. Yield: 1.62 g (98.2%). ¹H NMR (C₆D₆): δ = 1.30 [d, ${}^{3}J_{\rm H,H}$ = 6.1 Hz, 18 H, OCH(CH₃)₂], 1.85 (s, 3 H, SCH₃), 2.54 (t, ${}^{3}J_{\rm H,H}$ = 6.2 Hz, 2 H, SCH₂), 4.17 (t, ${}^{3}J_{\rm H,H}$ = 6.2 Hz, 2 H, OCH₂), 4.71 [sept, ${}^{3}J_{\rm H,H}$ = 6.1 Hz, 3 H, OCH(CH₃)₂] ppm. 13 C{ 1 H} NMR (C₆D₆): δ = 26.1 [OCH(CH₃)₂], 37.9 (SCH₂), 61.4 (OCH₂), 65.7 [OCH(CH₃)₂] ppm; the signal of (H₃CS) was not observed. 125 Te{ 1 H} NMR (C₆D₆): δ = 1519 ppm. C₁₂H₂₈O₄STe (396.02): C 36.40, H 7.13, S 8.10; found C 35.36, H 6.70, S 8.32.

Tellurium Tetrakis[2-(dimethylamino)ethoxide], Te(OCH₂-CH₂NMe₂)₄ (2): The preparation was carried out by analogy to that of 1a, using Te(OiPr)₄ (1.15 g, 3.2 mmol), 2-(dimetylamino)ethanol, HOCH₂CH₂NMe₂ (1.16 g, 13.0 mmol), and 50 mL of benzene. The colourless and viscous crude product was washed with a small amount of diethyl ether and dried in vacuo. Yield: 1.21 g (80.0%). ¹H NMR (CDCl₃): $\delta = 2.36 + 2.25 + 2.21$ [3 s, 24 H, $N(CH_3)_2$], 2.83 + 2.68 + 2.45 + 2.41 (4 m, 8 H, NCH_2), 4.36 + 4.09 + 4.01 + 3.54 (4 m, 8 H, OCH₂) ppm. ¹³C{¹H} NMR (CDCl₃): $\delta = 43.5 + 44.9 [N(CH_3)_2], 58.4 (NCH_2), 60.3 + 62.4$ (OCH_2) ppm. $^{125}Te\{^1H\}$ NMR (CDCl₃): $\delta = 1410$ ppm. Raman: $\tilde{v} = 2941 \text{ [vs, } v(C-H)], 2863 \text{ [s, } v(C-H)], 2827 \text{ [s, } v(C-H)], 2784$ [s, $\nu(C-H)$], 2766 [s, $\nu(C-H)$], 781 [m, $\nu(Te-O)$], 711 [w, v(Te-O)], 571 [m, v(Te-O)], 533 [vs, v(Te-O)] cm⁻¹. C₁₆H₄₀N₄O₄Te (480.10): C 40.02, H 8.40, N 11.67; found C 41.02, H 8.48, N 11.79.

Tellurium Dichloride Bis[2-(methoxy)ethoxide], TeCl₂(OCH₂CH₂OMe)₂ (3): TeCl₄ (1.05 g, 3.9 mmol) and Me₃SiOCH₂CH₂OMe (2.35 g, 15.9 mmol) were dissolved in 20 mL of benzene. The major part of the solvent together with the chlorotrimethylsilane formed during the reaction was then distilled off under normal pressure. The brown viscous residue was dissolved in 10 mL of toluene. From this solution 3 precipitated at -45 °C as colourless crystals. Yield: 1.27 g (93.3%). M.p. 102 °C. ¹H NMR ([D₈]THF): δ = 3.50 (s, 3 H, H_3 CO), 3.65 (t, $^3J_{\rm H,H}$ = 4.4 Hz, 2 H, H_3 COC H_2), 4.58 (t, $^3J_{\rm H,H}$ = 4.5 Hz, 2 H, TeOC H_2) ppm. 13 C{¹H} NMR ([D₈]THF): δ = 55.8 (OCH₃), 70.2 (MeOCH₂), 72.5 (TeOCH₂) ppm. 125 Te{¹H} NMR ([D₈]THF): δ = 1759 ppm. $^{C_6}H_{14}$ Cl₂O₄Te (348.68): C 20.67, H 4.05; found C 18.93, H 3.72.

Tellurium Trichloride 2-(Dimethylamino)ethoxide, Cl₃OCH₂CH₂NMe₂ (4a): Me₃SiOCH₂CH₂NMe₂ 19.8 mmol) and TeCl₄ (5.32 g, 19.7 mmol) were dissolved in 80 mL of THF. The major part of the solvent together with the chlorotrimethylsilane formed during the reaction was then distilled off under normal pressure. A brownish solid precipitated which was isolated, washed several times with petroleum ether and dried in vacuo. Yield: 5.56 g (87.6%). M.p. 130 °C (decomp.). Raman: $\tilde{v} = 2975$ [m, v(C-H)], 2935 [w, v(C-H)], 2919 [w, v(C-H)], 1259 [w, $\delta(CH_2)$], 1172 [w, $\delta(CH_3)$], 764 [w, $\rho(CH_2)$], 590 (w), 560 [s, v(Te-O)], 473 (m), 399 (m), 289 [s, v(Te-Cl)], 270 [s, v(Te-Cl)], 232 [m, ν (Te-Cl)] cm⁻¹. C₄H₁₀Cl₃NOTe (322.08): C 14.92, H 3.13, N 4.35; found C 14.87, H 3.12, N 4.37.

Tellurium Trichloride 2-(Methoxy)ethoxide, TeCl₃OCH₂CH₂OMe (4b): The preparation was carried out by analogy to that of 4a, using TeCl₄ (2.51 g, 9.3 mmol), Me₃SiOCH₂CH₂OMe (1.38 g, 9.3 mmol) and 30 mL of THF. The brown viscous residue was dissolved in 10 mL of toluene. From this solution 4b precipitated at -45 °C as a colourless solid. Yield: 2.31 g (80.4%). M.p. 148–150 °C (decomp.). MS (field ionisation): mlz (%) = 309.8 (12) [M⁺], 274.9 (100) [M – Cl]⁺. ¹H NMR (CDCl₃): δ = 3.76 (s, 3 H, OCH₃), 4.03 (m, 2 H, MeOCH₂), 4.82 (m, 2 H, TeOCH₂) ppm. 13 C{¹H} NMR (CDCl₃): δ = 46.2 (OCH₃), 65.4 (MeOCH₂), 72.7

(TeO CH_2) ppm. ¹²⁵Te{¹H} NMR (CDCl₃): $\delta = 1747$ ppm. C₃H₇Cl₃O₂Te (309.04): C 11.66, H 2.28; found C 11.98, H 2.05.

Tellurium Trichloride 2-(Methylsulfenyl)ethoxide, TeCl₃OCH₂CH₂SMe (4c): The preparation was carried out by analogy to that of 4a, using TeCl₄ (2.30 g, 8.5 mmol), Me₃SiOCH₂CH₂SMe (1.42 g, 8.6 mmol) and 30 mL of THF. From the yellow solution, which remained after distillation of the main part of the solvent and the chlorotrimethylsilane, a colourless solid precipitated which was washed with petroleum ether and dried in vacuo. Yield: 1.71 g (61.6%). M.p. 170–173 °C (decomp.). MS (field ionisation): m/z (%) = 325.8 (100) [M⁺], 288.8 (22) [M – Cl]⁺. ¹H NMR ([D₈]THF): δ = 2.52 (s, 3 H, SCH₃), 3.18 (t, $^{3}J_{H,H}$ = 5.2 Hz, 2 H, SCH₂), 5.04 (t, $^{3}J_{H,H}$ = 5.2 Hz, 2 H, OCH₂) ppm. 13 C{¹H} NMR ([D₈]THF): δ = 16.4 (SCH₃), 39.2 (SCH₂), 64.7 (OCH₂) ppm. 125 Te{¹H} NMR ([D₈]THF): δ = 1693 ppm. C₃H₇Cl₃OSTe (325.10): C 11.08, H 2.17, S 9.86; found C 11.36, H 2.36, S 10.04.

Single-Crystal X-ray Diffraction: The single-crystal X-ray diffraction experiment was performed with a SMART CCD (Bruker AXS) diffractometer with low-temperature unit, employing Mo- K_{α} radiation ($\lambda=71.073$ pm). The crystal structure was solved with direct methods and difference Fourier analysis (SIR-92)^[15] and refined against F^2 (SHELXL-97).^[16] For further details, see Table 5. CCDC-173865 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@-ccdc.cam.ac.uk].

Theoretical Methods: The ab initio calculations were performed by using the GAUSSIAN-94 and GAUSSIAN-98 software packages.[18,19] For these the following procedure was applied: Starting from a molecular structure with reasonable atomic distances, bond and torsion angles, the energy was calculated at the Hartree Fock level, using an effective core double-zeta pseudopotential basis set.[20,21] augmented by d-type polarisation functions for all nonhydrogen atoms, with exponents for Te, S and Cl according to Höllwarth et al,^[22] and 0.75, 0.80 and 0.85 for C, N and O, respectively (HF/LANL2DZP). The geometry was optimised by using energy gradients obtained according to the algorithm of Schlegel,[23] and the HF/LANL2DZP energy of the stationary point reached at the end of the optimisation was calculated. The HF/LANL2DZPoptimised geometry was re-optimised by using energy gradients from second-order perturbation calculation according to Møller and Plesset using the above-mentioned basis set (MP2/ LANL2DZP). Again, the energy of the stationary point at the end of the optimisation was calculated. The chemical bonds of the optimised molecule were analysed in terms of natural bond orbitals (NBO).[24,25] The normal modes of vibration were then calculated from numerical (GAUSSIAN94) or analytical (GAUSSIAN98) force constants. By means of statistical thermodynamics, the enthalpy at 298 K, H²⁹⁸, was calculated. Only MP2/LANL2DZP molecular structures, energies, and enthalpies are given in this paper.

Acknowledgments

H. F. would like to thank the Fonds der Chemischen Industrie and the Johannes-Gutenberg-Universität Mainz for financial support.

- [2] D. B. Denney, D. Z. Denney, P. J. Hammond, Y. F. Hsu, J. Am. Chem. Soc. 1981, 103, 2340-2347.
- [3] K. C. Malhotra, N. Sharma, R. Sharma, S. C. Chaudhry, J. Indian Chem. Soc. 1990, 67, 793-795.
- [4] H. Meerwein, T. Bersin, Justus Liebigs Ann. Chem. 1929, 476, 139.
- [5] H. E. Gottlieb, S. Hoz, I. Elyashiv, M. Albeck, *Inorg. Chem.* 1994, 33, 808-811.
- [6] R. C. Mehrotra, S. N. Mathur, J. Indian Chem. Soc. 1965, 42, 1-4.
- [7] R. C. Mehrotra, S. N. Mathur, J. Indian Chem. Soc. 1967, 44, 216–218.
- [8] N. Sudha, H. B. Singh, Coordination Chemistry Reviews 1994, 135/136, 469-515 and references cited therein.
- [9] A. Panda, G. Mugesh, H. B. Singh, R. J. Butcher, Organometallics 1999, 18, 1986-1993.
- [10] H. Fleischer, D. Schollmeyer, *Inorg. Chem.* **2001**, *40*, 324–328.
- [11] Tables of Interatomic Distances and Configurations in Molecules and Ions (Ed.: L. Sutton), Spec. Publ. no. 11 and 18, The Chemical Society, London, 1958 and 1965.
- [12] A. Bondi, J. Phys. Chem. 1964, 68, 441-451.
- [13] H. B. Singh, N. Sudha, R. J. Butcher, *Inorg. Chem.* 1992, 31, 1431–1435.
- [14] H. Fleischer, Eur. J. Inorg. Chem. 2001, 393-404.
- [15] SIR A Program for the Automatic Solution fo Crystal Structures by Direct Methods: A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435–436.
- [16] G. M. Sheldrick, SHELXL-97 Program for crystal structure refinement, University of Göttingen, Germany, 1997.
- [17] R. Blessing, Acta Crystallogr., Sect. A 1995, 51, 33-38.
- [18] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, GAUSSIAN 94, Revision E.2, Gaussian, Inc., Pittsburgh PA, 1995.
- [19] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, GAUSSIAN 98, Revision A.6, Gaussian, Inc., Pittsburgh PA, 1998.
- [20] L. Szasz, Pseudopotential Theory of Atoms and Molecules, Wiley, New York, Chichester, Brisbane, Toronto, Singapore, 1985.
- [21] W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284-298.
- [22] A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* 1993, 208, 237–240.
- ^[23] H. B. Schlegel, *J. Comp. Chem.* **1982**, *3*, 214–218.
- [24] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746.
- ^[25] A. E. Reed, L A. Curtiss, F. Weinhold, *Chem. Rev.* **1988**, *88*, 899–926.

Received January 16, 2002 [I02027]

^[1] N. N. Greenwood, B. P. Straughan, A. E. Wilson, J. Chem. Soc. A 1968, 2209-2212.